侠客书屋 通过搜索各大小说站为您自动抓取各类小说的最快更新供您阅读!
侠客书屋 >  离语 >   第301章 密码

基于聚类的离散化假设我们有一个包含1000个房屋的价格数据的数据集,我们想将价格分成5个簇,以下是离散化方法:首先,随机分配5个中心点。根据每个房屋的价格和这5个中心点的距离,将每个房屋分入距离最近的中心点对应的簇中。重新计算每个簇的中心点,以中心点的坐标作为新的中心点。重复步骤2和步骤3,直到中心点的移动小于某个阈值或达到最大迭代次数。最终得到的5个簇即为我们需要的离散化结果。自适应离散化假设我们有一个包含个商品销售量数据的数据集,我们想将销售量离散化成n个区间,以下是离散化方法:先将所有商品销售量根据大小排序。初始时,将数据集分成n个区间,每个区间保持相等的数据数量。计算每个区间的范围(最小值和最大值),并计算相邻区间的范围的中点,这些中点作为新的分割点。根据新的分割点重新划分区间,如果新的区间与原来的区间相同,则算法停止。否则,重复步骤3和步骤4。最终得到的n个区间即为我们需要的离散化结果。卷积核输出形状卷积神经网络中的卷积层的输出维度计算,可以通过以下公式得出:输出的高度 = (输入的高度 - 卷积核的高度 + 2 * padding) \/ 步长 + 1输出的宽度 = (输入的宽度 - 卷积核的宽度 + 2 * padding) \/ 步长 + 1输出的深度 = 卷积核的数量这里,padding是指在输入数据周围填充的0的行数或列数(在计算输出大小时有助于保持空间尺寸不变),步长是指卷积核移动的步数。输出的深度直接取决于我们使用的卷积核的数量。输入数据大小为32 x 32大小单通道图片,在c1卷积层使用6个大小为5 x 5的卷识核进行卷积,padding = 0,步长为1通过6个大小为5 x 5的卷识核之后的输出是多大尺寸的,怎么用公式计算给定:输入的高度 h = 32;输入的宽度 w = 32;卷积核的高度 Kh = 5;卷积核的宽度 Kw = 5;卷积核的数量 K = 6;步长 S = 1;padding p = 0根据上述公式,我们可以计算出卷积后的输出尺寸:输出的高度 = (h - Kh + 2p) \/ S + 1 = (32 - 5 + 2*0) \/ 1 + 1 = 28输出的宽度 = (w - Kw + 2p) \/ S + 1 = (32 - 5 + 2*0) \/ 1 + 1 = 28输出的深度 = K = 6所以,通过6个大小为5x5的卷积核后的输出尺寸为 28x28x6。

留出法(holdout method):基本思想:将原始数据集划分为训练集和测试集两部分,其中训练集用于模型训练,而测试集则用于评估模型的性能。实施步骤:根据比例或固定的样本数量,随机选择一部分数据作为训练集,剩余部分用作测试集。优点:简单快速;适用于大规模数据集。缺点:可能由于训练集和测试集的不同导致结果的方差较高;对于小样本数据集,留出的测试集可能不够代表性。2交叉验证法(cross-Validation):基本思想:将原始数据集划分为K个大小相等的子集(折),其中K-1个子集用于训练模型,剩下的1个子集用于测试模型,这个过程轮流进行K次,最后将K次实验的结果综合得到最终的评估结果。实施步骤:将数据集随机划分为K个子集,依次选择每个子集作为验证集,其余子集作为训练集,训练模型并评估性能。重复这个过程K次,取K次实验的平均值作为模型的性能指标。优点:更充分利用了数据;可以减小因样本划分不同而引起的方差。缺点:增加了计算开销;在某些情况下,对于特定划分方式可能导致估计偏差。3自助采样法(bootstrapping):基本思想:使用自助法从原始数据集中有放回地进行有偏复制采样,得到一个与原始数据集大小相等的采样集,再利用采样集进行模型训练和测试。实施步骤:从原始数据集中有放回地抽取样本,形成一个新的采样集,然后使用采样集进行模型训练和测试。优点:适用于小样本数据集,可以提供更多信息;避免了留出法和交叉验证法中由于划分过程引入的变化。缺点:采样集中约有36.8%的样本未被采到,这些未被采到样本也会对模型性能的评估产生影响;引入了自助抽样的随机性。拓展:选择何种数据集划分方法应根据以下因素进行综合考虑:1数据集大小:当数据集较大时,留出法能够提供足够的训练样本和测试样本,而且计算开销相对较小。当数据集较小时,交叉验证法和自助采样法能更好地利用数据。

2计算资源和时间限制:交叉验证需要多次训练模型并评估性能,所以会增加计算开销;自助采样法则需要从原始数据集中进行有放回的采样,可能导致计算成本上升。如果计算资源和时间有限,留出法可能是更可行的选择。3数据集特点:如果数据集具有一定的时序性,建议使用留出法或时间窗口交叉验证,确保训练集和测试集在时间上是连续的。如果数据集中存在明显的类别不平衡问题,可以考虑使用分层抽样的交叉验证来保持类别比例的一致性。4评估结果稳定性要求:交叉验证可以提供多个实验的平均结果,从而减少由于随机划分带来的方差。如果对评估结果的稳定性要求较高,交叉验证是一个不错的选择。总而言之,没有一种数据集划分方法适用于所有情况。选择合适的方法应根据具体问题的需求、数据集的大小以及可用的资源和时间来进行综合考虑,并在实践中进行实验比较以找到最佳的划分方式。2、请列举模型效果评估中准确性、稳定性和可解释性的指标。1准确性:准确率(Accuracy):预测正确的样本数量与总样本数量的比例。精确率(precision):预测为正类的样本中,真实为正类的比例。召回率(Recall):真实为正类的样本中,被模型预测为正类的比例。F1值(F1-Score):综合考虑了精确率和召回率的调和平均,适用于评价二分类模型的性能。2稳定性:方差(Variance):指模型在不同数据集上性能的波动程度,方差越大说明模型的稳定性越低。交叉验证(cross Validation):通过将数据集划分为多个子集,在每个子集上训练和评估模型,然后对结果进行平均,可以提供模型性能的稳定估计。3可解释性:特征重要性(Feature Importance):用于衡量特征对模型预测结果的贡献程度,常用的方法包括基于树模型的特征重要性(如Gini Importance和permutation Importance)以及线性模型的系数。4可视化(Visualization):通过可视化模型的结构、权重或决策边界等,帮助解释模型的预测过程和影响因素。5 ShAp值(Shapley Additive explanations):一种用于解释特征对预测结果的贡献度的方法,提供了每个特征对最终预测结果的影响大小。这些指标能够在评估模型效果时提供关于准确性、稳定性和可解释性的信息,但具体选择哪些指标要根据具体任务和需求进行综合考虑。

侠客书屋推荐阅读:我白天特案局办案,晚上地府当差我来自黄泉掀饭桌!小疯批夺回气运后不忍了一吻定情,总裁甜蜜囚爱开局逃婚,疯批太子穷追不舍炮灰父女入赘后,全家后悔了穿成霸总娇妻失败后,在恋综选夫穿越四合院之我有系统我怕谁杂货铺通古今,我养的将军醋翻了快穿神君大人的糖去哪了HP:东方来了个笑面蛇逼她给白月光顶罪?渣父子我不要了师尊怎么那么撩你崽崽让哪里逃灵异界大佬:全家跪求我带飞茅山弟子:我靠词条系统混诡异江澄重生后开局出生在魔域盗墓,被偷听心声后我暴露了荒村血祭人在奥特:从海帕杰顿幼虫开始快穿阎罗王:这个女配不太毒惊!陆爷的心尖宠竟是马甲大佬妻主罪恶滔天,死不悔改带着雷欧,穿越奥特宇宙HP万人迷在圣芒戈诱反派!勾疯批!顶级尤物撩疯了千方百计与千方百计快穿:殿下她是个万人迷重生80,从在大兴安岭打猎开始少年白马:把自己炼成药人霍格沃兹:魔法世界第一个资本家谁懂啊?我粉的主播成影后了!陈情令:如果长安牛马实录穿成反派大佬的漂亮毒妻七零:穿成了早逝炮灰她逆天改命书穿圣母女主:老娘双刀定人生娇美知青与糙汉酱酱漾漾的生活炮灰前妻觉醒后决定拿钱走剧情帝妃掌妖异血瞳乱天下在老师面前乱舞的麻瓜从mc开始的万界之旅逐星传说霍格沃茨:我靠MC伪装炼金教授原神:我是天理,不是你们老婆!盗墓:我的网游通盗笔Re:艾蜜莉雅很想让我当王妃!特摄盘点:铠甲假面?统统碗里来绝色狂徒炮灰太娇软,掐腰就会哭
侠客书屋搜藏榜:王爷别虐了,你的暗卫娇妻早跑了影视遇上对的人互绿!你舔白月光,我撩隔壁残王【变形金刚】俘虏求生记重生后,阿姨卷起来弃女觉醒退婚后,清冷权臣他以身相许精灵:从当大木博士助手开始误撩顶级豪门大佬后被天天放肆宠快让开!那个女孩是我的人生如意全靠演技这个女主竟然是食死徒明日方舟:迷途的旅人重生为博士奴隶修仙传繁花错位似流年王妃状态易崩坏公主殿下请理智,亡国敌君是绿茶开局就遭百鬼缠身要相信阳光总在久别重逢,傅先生总说我始乱终弃双面恋人我在斗罗开酒馆,醉倒朱竹清暗相思,无处说,夜来惆怅烟月用尽我的一切奔向你南街小子新书徒儿下山找师姐吧快穿:漂亮老婆又被抱走了八零二嫁小甜妻火影:斑爷等等我们不是兄弟情吗野小子与野百合太一神主之斗罗大陆梨子圆了小知青从末世来穿越后只想好好活着火影直播从剧场版开始变强从喰种开始我家当铺当鬼神我的二次元之旅,启程了闪婚大叔后,挺孕肚离家出走我才不是配角火影:人在宇智波,我能提取词条小道姑直播太准!日赚一亿成首富我们的岁月长河虎啸乾坤:万物传奇诡异修仙世界:我能豁免代价双世青佩十七时五十八分的落日快穿:炮灰剧本?抱歉我才是女主同谋合污【刑侦】杨然修仙传让你进宫当刺客:你居然偷了女帝的心
侠客书屋最新小说:为奴流放后,将军对我俯首称臣失约三次后,阮小姐闪婚了死对头完蛋!我养的炉鼎是正道仙尊捡到八零大佬,做精娇娇赢麻了观音泥笑着玩转战锤兽世,和闺蜜从种田到宫斗随军前,小军嫂夺回空间搬空全家穿越手记:论勇者的培养草根狂徒:我只想把田种好亿点点亡灵低语录谁家清冷师尊将妖徒按在怀里撩?雪中:污蔑当天,反手编辑北凉王!星穹弑神:我靠科技修真推三千年我家住在大陕北认亲侯府被当表小姐,真千金她不伺候了重生后逆袭大律师搬空家底去下乡李世民与渔家女曹婉儿的邂逅情缘风水云雷电我见公子多有病魔道祖师之魏无羡重生盗墓:别惹我,我兄弟南瞎北哑四合院:阅尽天下美女后宫佳丽三千,应要雨露均沾修仙:开局婴儿,我修炼超快宝贝,放松点2九尾狐恩仇录长相思夭柳回溯三生三世奇案擒凶嫡女重生:侯府娇宠穿书女配跟反派大佬领证剧情崩了禁娇鸾:惹上暴戾太子逃不掉!带着手机穿越之太子又又又疯了遨游诸天,弥补遗憾绿调四合院:空间异能者何雨柱仙侠传之混沌元始录青铜镜中电子狐灭族之夜前带宇智波去航海一眼惊鸿之倾世太子妃真千金养黄泉路后,全家火葬场了杏花落尽燕归时渣男太子,你家库房已被我搬空【借邪骨,我以鬼仙破阴阳】阴符九阙旮旯村旮旯事换亲改嫁绝嗣首长后,继姐哭瞎眼穿越废灵根,我靠修仙百艺逆袭茅山风云录